-/* \r
-A C-program for MT19937, with initialization improved 2002/1/26.\r
-Coded by Takuji Nishimura and Makoto Matsumoto.\r
-\r
-Before using, initialize the state by using init_genrand(seed) \r
-or init_by_array(init_key, key_length).\r
-\r
-Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,\r
-All rights reserved. \r
-\r
-Redistribution and use in source and binary forms, with or without\r
-modification, are permitted provided that the following conditions\r
-are met:\r
-\r
-1. Redistributions of source code must retain the above copyright\r
-notice, this list of conditions and the following disclaimer.\r
-\r
-2. Redistributions in binary form must reproduce the above copyright\r
-notice, this list of conditions and the following disclaimer in the\r
-documentation and/or other materials provided with the distribution.\r
-\r
-3. The names of its contributors may not be used to endorse or promote \r
-products derived from this software without specific prior written \r
-permission.\r
-\r
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS\r
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT\r
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR\r
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR\r
-CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,\r
-EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,\r
-PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR\r
-PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF\r
-LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING\r
-NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\r
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\r
-\r
-\r
-Any feedback is very welcome.\r
-http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html\r
-email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)\r
-\r
-Reference: M. Matsumoto and T. Nishimura, "Mersenne Twister: \r
-A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator",\r
-ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1,\r
-January 1998, pp 3--30. \r
-*/\r
-\r
+/*
+A C-program for MT19937, with initialization improved 2002/1/26.
+Coded by Takuji Nishimura and Makoto Matsumoto.
+
+Before using, initialize the state by using init_genrand(seed)
+or init_by_array(init_key, key_length).
+
+Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+1. Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+
+3. The names of its contributors may not be used to endorse or promote
+products derived from this software without specific prior written
+permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+Any feedback is very welcome.
+http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
+email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
+
+Reference: M. Matsumoto and T. Nishimura, "Mersenne Twister:
+A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator",
+ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1,
+January 1998, pp 3--30.
+*/
+
// C++ wrapped up by Changjiang Yang, more important: make it thread-safe.
#ifndef _MT_RND_H_
#define _MT_RND_H_
-\r
-namespace MT {\r
-/* Period parameters */ \r
-const int N = 624;\r
-const int M = 397;\r
-const unsigned long MATRIX_A = 0x9908b0dfUL; /* constant vector a */\r
-const unsigned long UPPER_MASK = 0x80000000UL; /* most significant w-r bits */\r
-const unsigned long LOWER_MASK = 0x7fffffffUL; /* least significant r bits */\r
-\r
-class MersenneTwist {\r
- unsigned long mt[N]; /* the array for the state vector */\r
- int mti; /* mti==N+1 means mt[N] is not initialized */\r
-public:\r
-\r
- MersenneTwist() : mti(N+1) {}\r
-\r
- /* initializes mt[N] with a seed */\r
- // Note: Initializing TWISTER to the scalar integer state 0 actually\r
- // corresponds to the C call init_genrand(5489).\r
- void init_genrand(unsigned long s)\r
- {\r
- mt[0]= s & 0xffffffffUL;\r
- for (mti=1; mti<N; mti++) {\r
- mt[mti] = \r
- (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); \r
- /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */\r
- /* In the previous versions, MSBs of the seed affect */\r
- /* only MSBs of the array mt[]. */\r
- /* 2002/01/09 modified by Makoto Matsumoto */\r
- mt[mti] &= 0xffffffffUL;\r
- /* for >32 bit machines */\r
- }\r
- }\r
-\r
- /* initialize by an array with array-length */\r
- /* init_key is the array for initializing keys */\r
- /* key_length is its length */\r
- /* slight change for C++, 2004/2/26 */\r
- void init_by_array(unsigned long init_key[], int key_length)\r
- {\r
- int i, j, k;\r
- init_genrand(19650218UL);\r
- i=1; j=0;\r
- k = (N>key_length ? N : key_length);\r
- for (; k; k--) {\r
- mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))\r
- + init_key[j] + j; /* non linear */\r
- mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */\r
- i++; j++;\r
- if (i>=N) { mt[0] = mt[N-1]; i=1; }\r
- if (j>=key_length) j=0;\r
- }\r
- for (k=N-1; k; k--) {\r
- mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))\r
- - i; /* non linear */\r
- mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */\r
- i++;\r
- if (i>=N) { mt[0] = mt[N-1]; i=1; }\r
- }\r
-\r
- mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ \r
- }\r
-\r
- /* generates a random number on [0,0xffffffff]-interval */\r
- unsigned long genrand_int32(void)\r
- {\r
- unsigned long y;\r
- static unsigned long mag01[2]={0x0UL, MATRIX_A};\r
- /* mag01[x] = x * MATRIX_A for x=0,1 */\r
-\r
- if (mti >= N) { /* generate N words at one time */\r
- int kk;\r
-\r
- if (mti == N+1) /* if init_genrand() has not been called, */\r
- init_genrand(5489UL); /* a default initial seed is used */\r
-\r
- for (kk=0;kk<N-M;kk++) {\r
- y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);\r
- mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];\r
- }\r
- for (;kk<N-1;kk++) {\r
- y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);\r
- mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];\r
- }\r
- y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);\r
- mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];\r
-\r
- mti = 0;\r
- }\r
-\r
- y = mt[mti++];\r
-\r
- /* Tempering */\r
- y ^= (y >> 11);\r
- y ^= (y << 7) & 0x9d2c5680UL;\r
- y ^= (y << 15) & 0xefc60000UL;\r
- y ^= (y >> 18);\r
-\r
- return y;\r
- }\r
-\r
- /* generates a random number on [0,0x7fffffff]-interval */\r
- long genrand_int31(void)\r
- {\r
- return (long)(genrand_int32()>>1);\r
- }\r
-\r
- /* generates a random number on [0,1]-real-interval */\r
- double genrand_real1(void)\r
- {\r
- return genrand_int32()*(1.0/4294967295.0); \r
- /* divided by 2^32-1 */ \r
- }\r
-\r
- /* generates a random number on [0,1)-real-interval */\r
- double genrand_real2(void)\r
- {\r
- return genrand_int32()*(1.0/4294967296.0); \r
- /* divided by 2^32 */\r
- }\r
-\r
- /* generates a random number on (0,1)-real-interval */\r
- double genrand_real3(void)\r
- {\r
- return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0); \r
- /* divided by 2^32 */\r
- }\r
-\r
- /* generates a random number on [0,1) with 53-bit resolution*/\r
- double genrand_res53(void) \r
- { \r
- unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6; \r
- return(a*67108864.0+b)*(1.0/9007199254740992.0); \r
- }\r
-};\r
+
+namespace MT {
+/* Period parameters */
+const int N = 624;
+const int M = 397;
+const unsigned long MATRIX_A = 0x9908b0dfUL; /* constant vector a */
+const unsigned long UPPER_MASK = 0x80000000UL; /* most significant w-r bits */
+const unsigned long LOWER_MASK = 0x7fffffffUL; /* least significant r bits */
+
+class MersenneTwist {
+ unsigned long mt[N]; /* the array for the state vector */
+ int mti; /* mti==N+1 means mt[N] is not initialized */
+public:
+
+ MersenneTwist() : mti(N+1) {}
+
+ /* initializes mt[N] with a seed */
+ // Note: Initializing TWISTER to the scalar integer state 0 actually
+ // corresponds to the C call init_genrand(5489).
+ void init_genrand(unsigned long s)
+ {
+ mt[0]= s & 0xffffffffUL;
+ for (mti=1; mti<N; mti++) {
+ mt[mti] =
+ (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
+ /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
+ /* In the previous versions, MSBs of the seed affect */
+ /* only MSBs of the array mt[]. */
+ /* 2002/01/09 modified by Makoto Matsumoto */
+ mt[mti] &= 0xffffffffUL;
+ /* for >32 bit machines */
+ }
+ }
+
+ /* initialize by an array with array-length */
+ /* init_key is the array for initializing keys */
+ /* key_length is its length */
+ /* slight change for C++, 2004/2/26 */
+ void init_by_array(unsigned long init_key[], int key_length)
+ {
+ int i, j, k;
+ init_genrand(19650218UL);
+ i=1; j=0;
+ k = (N>key_length ? N : key_length);
+ for (; k; k--) {
+ mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
+ + init_key[j] + j; /* non linear */
+ mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
+ i++; j++;
+ if (i>=N) { mt[0] = mt[N-1]; i=1; }
+ if (j>=key_length) j=0;
+ }
+ for (k=N-1; k; k--) {
+ mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
+ - i; /* non linear */
+ mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
+ i++;
+ if (i>=N) { mt[0] = mt[N-1]; i=1; }
+ }
+
+ mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
+ }
+
+ /* generates a random number on [0,0xffffffff]-interval */
+ unsigned long genrand_int32(void)
+ {
+ unsigned long y;
+ static unsigned long mag01[2]={0x0UL, MATRIX_A};
+ /* mag01[x] = x * MATRIX_A for x=0,1 */
+
+ if (mti >= N) { /* generate N words at one time */
+ int kk;
+
+ if (mti == N+1) /* if init_genrand() has not been called, */
+ init_genrand(5489UL); /* a default initial seed is used */
+
+ for (kk=0;kk<N-M;kk++) {
+ y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
+ mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
+ }
+ for (;kk<N-1;kk++) {
+ y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
+ mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
+ }
+ y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
+ mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];
+
+ mti = 0;
+ }
+
+ y = mt[mti++];
+
+ /* Tempering */
+ y ^= (y >> 11);
+ y ^= (y << 7) & 0x9d2c5680UL;
+ y ^= (y << 15) & 0xefc60000UL;
+ y ^= (y >> 18);
+
+ return y;
+ }
+
+ /* generates a random number on [0,0x7fffffff]-interval */
+ long genrand_int31(void)
+ {
+ return (long)(genrand_int32()>>1);
+ }
+
+ /* generates a random number on [0,1]-real-interval */
+ double genrand_real1(void)
+ {
+ return genrand_int32()*(1.0/4294967295.0);
+ /* divided by 2^32-1 */
+ }
+
+ /* generates a random number on [0,1)-real-interval */
+ double genrand_real2(void)
+ {
+ return genrand_int32()*(1.0/4294967296.0);
+ /* divided by 2^32 */
+ }
+
+ /* generates a random number on (0,1)-real-interval */
+ double genrand_real3(void)
+ {
+ return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0);
+ /* divided by 2^32 */
+ }
+
+ /* generates a random number on [0,1) with 53-bit resolution*/
+ double genrand_res53(void)
+ {
+ unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6;
+ return(a*67108864.0+b)*(1.0/9007199254740992.0);
+ }
+};
}
#endif